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Architectur

Von Neumann Machine

Transistors & Devices

= Rely on abstraction layers to
manage complexity
= lVon Neumann Machine



End of Moore’s Law

We are running into physical limits
Ultimately, single molecule/atom/electron

Before we reach the atomic scale
Manufacturing yield (working parts)
Reliability (intermittent/permanent failure)
Variability (each device has unique characteristics)
Power (can't afford to use all devices all the time)

On the software side: multicore impact
Parallel software is very difficult to write

Need fundamentally new approaches
Von Neumann machines: too successful



By no means a novel inspiration

“If I haven't seen further, it's from standing
in the footprints of giants.”

But, neuroscientific understanding has
improved substantially

Detailed characterization of low-level primitives

Structure and connectivity much better
understood

Advances in measurement, analysis
Etc.

Is the brain even an interesting candidate?
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i Ken Jennings vs. IBM Watson
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Ken (“baseline”) Watson

Pretty good at Jeopardy (also, life)
400g gray matter

30W
1 lifetime of experience

Pretty good at Jeopardy

10 racks, 15TB DRAM, 2880 CPU cores,
80 TFLOPs

200KW
100 person-years to develop
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= Introduction & Motivation -

= Neuromorphic applications [IISWC'12]

= Semantic Gap in Neuromorphic Systems
= Neuromorphic ISA proposal [ASPLOS'11]
= Digital LIF Spiking Neurons [HPCA'13]

= Conclusions & Future Work



W@ Emerging Applications: RMS
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PARSEC [Intel, Princeton]

Classification Clustering Approximation Optimization Filtering
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. Loop Accelerators
Multi-Purpose

Heterogeneous
multi-cores

FPGAs/CGRAs

NNet Accelrators
= Flexibility/energy efficiency/robustness/performance
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Classification Clustering Approximation

BenchNN: On the Broad
Potential Application
Scope of Hardware
Neural Network
Accelerators. T. Chen et
al. In Proc. of the 2012
IISWC 2012, Nov 2012,

Also: Neural Acceleration
for General-Purpose
Approximate Programs,
H. Esmaeilzadeh et al.,
Proceedings of MICRO-
45, December 2012.
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vz A History Lesson
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Before Instruction Set Architecture...
Software depended on hardware knowledge
No portability
Optimizations were SW / HW pair specific
New computer => all new software

i | [ P |

Gene Amdahl introduces the ISA e |y -
Contract between SW / HW
IBM S/360 line from 1964 to present
Independently develop SW and HW
Safely optimize, transform SW




wiscown NISA proposal [aspLos'11]

STDP / LIF Cortical Column
QD =l

" S O W T T
i ANN
Hoay 1 )

Hidden

Input
Output

Biologically True

“Software”

“*Hardware”

Analog ANN



vison Neuromorphic HW/SW Interface
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= Neuromorphic Instruction Set Architecture (NISA)

=« Represents structure and state
« Automatic deployment/code generation
« Goals similar to HP Labs CQG PyNN

Hyper Colurn jn Neacertex

= Online profiling tools [ EER
= Monitor cortical netwomwmtcﬂuropmvmze/restructure

= Offline optimizationstools_¥-____________ .
Hardware-Software Interface
. Improvetthe- werﬁ

ency-and febus ess:
i : esnse 05, 2011

1. Hashmi et pee== Neuromor[ ﬁ%ﬁﬁﬁﬁ on Set ArchitgCigwess
2. Nere and H2EHS ERuH S B rofiling Het 1.1 ) Multi-GPU . ite hnk Hcelerate
Cortically InS[E I\Igorlthms Uil W

Shared L3 Cache 1
3. Nere and Hashmicet al., Simulating C@ﬁfﬁ\ .ﬁﬁﬁorks on Hetel%\é@h‘é@ﬂé MuIt| GPU
Systems, JPDC, 2012 NETLIST
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n IntrOdUCthn & MOtlvat|0n Architecture

= Neuromorphic applications [IISWC'12]

= Semantic Gap in Neuromorphic Systems
= Neuromorphic ISA proposal [ASPLOS'11]
= Digital LIF Spiking Neurons [HPCA'13]

= Conclusions & Future Work



IBM’s Neurosynaptic Core

Digital spiking Neurosynaptic Core
Neurons (NCNs)

LP CMQOS, standard digital logic

256 neurons/core on 4.2mm?

“Biologically competitive” energy
Few parameters/neuron
Binary synapses
Linear, no transcendental functions | =
1kHz operating frequency of NCNs &
45p]/spike

1024x256 HW

Synapses

1024 Axons

3mm

2mm



Axons SRAM Synapses Type
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*Figure adapted from Merolla et al.
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Visual Cortex

IT
invariant ) ‘L\D

complex objects ) Q-/

V4

geometric and more
complex shapes

V2
orientation, and
combinations of orientations

V1
edges of preferred
orientation

LGN

on-off, off-on, contrast

Retina

Complexity of Features



THE UNIVERSITY

WISCONSIN

MMMMMMM

Helicopter| _

(vertical)

Car

Vi
(horizontal)




Visual System NNet (VSNN)

100,000 modeled neurons

Applications
Invariant object recognition
Pattern completion
Motion detection/tracking/prediction
Noise filtering

Requires complex neuronal behaviors
Not implemented in NCN primitives!
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/5%??%7 Connection Type
¢ Excitatory (23%)

@=————= Inhibitory (8%)

NCN Compatible

Complex
V4 @ NMDA ** (40%) | Behaviors!
Qs Hebbian (10%)
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Retina Input * Short Term Plasticity (STP) modulated synapse

** N-methyl D-aspartate (NMDA) modulated synapses



NCN neurons are very simple (for efficiency)

Biology incorporates numerous complex behaviors
NMDA receptor effects last much longer than 1ms

Postsynaptic
Neuron

NMDA
Receptors
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azosn NCN Assembly - NMDA

Composable circuit of NCN emulates effect

Presynaptic
Neuron

Postsynaptic
Neuron

Random
Inhibitory
Spikes
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NCN Assembly - NMDA

Complex Neuron/Synapse NCN Assembly
Model (software) (Neurosynaptic Core hardware)

1 extra NCN/presynaptic neuron area overhead
~50*45p] power overhead (extra spikes)



Semantic Gap — Plasticity

IBM NCN does not support synaptic plasticity”
Hebbian learning — “fire together, wire together”

W };W

2 L
ras

Presynaptic
Neuron

Postsynaptic
Neuron

O,

WP

*Seo et al. design features two simple online learning rules



Presynaptic Postsynaptic
Neuron Neuron

2 extra NCNs/synapse
~1000*45p] power overhead/learned synapse



s, VSNN on Neurosynaptic Core
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“Compiler” replaces complex neurons/synapses with NCN
assemblies
Deployable on Neurosynaptic Core hardware

VSNN System Overheads

Regular NMDA
Neurons Assemblies STP Hebbian
Neuron “Area” | 100K 200K 40K |24k| === 3.64x
10Hz (~364K
45pJ/Spike¢ ¢ Neurons)
Dynamic Power 45 uw 2.6 mW 27 mW 9 83.2x

(~3.7mW)



Conclusions

Many compelling applications map to neural nets [IISWC'12]

Also: Neural Acceleration for General-Purpose Approximate Programs, H.
Esmaeilzadeh et al,, Proceedings of MICRO-45, December 2012.

Semantic gap between “software” and “hardware”
Biological neural networks — complex nonlinear behavior

Hardware substrates:
CPU, GPU, FPGA: compile & optimize [ASPLOS'11]
IBM Neurosynaptic Core: map to composable neuronal assemblies

Details in [Nere et al. HPCA *13]
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pen Questions

Applications
RMS, Approximate computing, robotics/control, ...

Finding the right abstractions/interfaces
HP COG? NISA? Multiple NISAs?
Theoretical foundations would be helpful

Building a software ecosystem
Compilers, runtimes, libraries, optimizers (static vs. runtime)

Finding the right hardware primitives

Digital LLIF? Analog? Memristor? Parameters, attributes, behavior
Online learning, HW vs. SW
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visosn Questions?
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